Post by Ex_Nuke_Troop on Feb 25, 2014 18:51:02 GMT
World Nuclear Association : Emerging Nuclear Energy Countries
(Updated February 2014)
Over 45 countries are actively considering embarking upon nuclear power programs.
These range from sophisticated economies to developing nations.
The front runners after Iran are UAE, Turkey, Vietnam, Belarus, Poland and possibly Jordan.
Nuclear power is under serious consideration in over 45 countries which do not currently have it (in a few, consideration is not necessarily at government level). For countries listed immediately below in bold, nuclear power prospects are more fully dealt with in specific country papers:
In Europe: Italy, Albania, Serbia, Croatia, Portugal, Norway, Poland, Belarus, Estonia, Latvia, Ireland, Turkey.
In the Middle East and North Africa: Iran, Gulf states including UAE, Saudi Arabia, Qatar & Kuwait, Yemen, Israel, Syria, Jordan, Egypt, Tunisia, Libya, Algeria, Morocco, Sudan.
In west, central and southern Africa: Nigeria, Ghana, Senegal, Kenya, Uganda, Namibia.
In South America: Chile, Ecuador, Venezuela, Bolivia, Peru.
In central and southern Asia: Azerbaijan, Georgia, Kazakhstan, Mongolia, Bangladesh, Sri Lanka
In SE Asia: Indonesia, Philippines, Vietnam, Thailand, Malaysia, Singapore, Australia, New Zealand.
In east Asia: North Korea.
Despite the large number of these emerging countries, they are not expected to contribute very much to the expansion of nuclear capacity in the foreseeable future – the main growth will come in countries where the technology is already well established. However, in the longer term, the trend to urbanisation in less-developed countries will greatly increase the demand for electricity, and especially that supplied by base-load plants such as nuclear. The pattern of energy demand in these countries will become more like that of Europe, North America and Japan.
Some of the above countries can be classified according to how far their nuclear programs or plans have progressed:
Some of the above countries can be classified according to how far their nuclear programs or plans have progressed:
Power reactors under construction: UAE, Belarus (Iran reactor has started up and been grid-connected)
Contracts signed, legal and regulatory infrastructure well-developed: Lithuania, Turkey.
Committed plans, legal and regulatory infrastructure developing: Vietnam, Jordan, Poland, Bangladesh.
Well-developed plans but commitment pending: Thailand, Indonesia, Egypt, Kazakhstan, Saudi Arabia, Chile; or commitment stalled: Italy.
Developing plans: Israel, Nigeria, Malaysia, Morocco, Kuwait.
Discussion as serious policy option: Namibia, Kenya, Mongolia, Philippines, Singapore, Albania, Serbia, Croatia, Estonia & Latvia, Libya, Algeria, Azerbaijan, Sri Lanka, Tunisia, Syria, Qatar, Sudan, Venezuela, Bolivia, Peru.
Officially not a policy option at present: Australia, New Zealand, Portugal, Norway, Ireland, Kuwait.
A September 2010 report by the International Atomic Energy Agency (IAEA) on International Status and Prospects of Nuclear Power said that some 65 countries without nuclear power plants “are expressing interest in, considering, or actively planning for nuclear power” at present, after a “gap of nearly 15 years” in such interest worldwide. Of these 65 un-named countries, it said that 21 are in Asia/Pacific, 21 in Africa, 12 in Europe (mostly eastern Europe), and 11 in Latin America. However, of the 65 interested countries, 31 are not currently [2010] planning to build reactors, and 17 of those 31 have grids of less than 5 GW, “too small to accommodate most of the reactor designs on offer.” The report added that technology options may also be limited for countries whose grids are between 5 GW and 10 GW.
Of the countries planning reactors, at September 2010: 14 “indicate a strong intention to proceed” with introduction of nuclear power; seven are preparing but haven’t made a final decision, 10 have made a decision and are preparing infrastructure, two have ordered a new nuclear power plant and one has a plant under construction, according to the IAEA assessment (see below re IAEA 'milestone' approach). These are identifiable in our development breakdown above, though Belarus and Poland have been moved up one category as of early 2012, and Saudi Arabia in mid 2012.
However, by September 2012 the picture was less positive for the leading 14 countries, and the IAEA expected only seven newcomer countries to launch nuclear programs in the near term. It did not name these, but Lithuania, UAE, Turkey, Belarus, Vietnam, Poland, and Bangladesh appear likely candidates. Others had stepped back from commitment, needed more time to set up infrastructure, or did not have credible finance.
One major issue for many countries is the size of their grid system. Many nuclear power plants are larger than the fossil fuel plants they supplement or replace, and it does not make sense to have any generating unit more than about one tenth the capacity of the grid (maybe 15% if there is high reserve capacity). This is so that the plant can be taken offline for refueling or maintenance, or due to unforeseen events. The grid capacity and quality may also be considered regionally, as with Jordan for instance. In many situations, as much investment in the grid may be needed as in the power plant(s).
The IAEA sets out a phased 'milestone' approach to establishing nuclear power capacity in new countries*, applying it to 19 issues. In broad outline the three phase approach is (milestones underlined):
Pre-project phase 1 (1-3 years) leading to knowledgeable commitment to a nuclear power program, resulting in set up of a Nuclear Power Program Implementing Organisation (NEPIO). This deals with the program, not the particular projects after phase 2.
Project decision-making phase 2 (3-7 years) involving preparatory work after the decision is made and up to inviting bids, with the regulatory body being established. In phase 2 the government role progressively gives way to that of the regulatory body and the owner-operator.
Construction phase 3 (7-10 years) with regulatory body operational, up to commissioning and operation.
* Milestones in the development of national infrastructure for nuclear power (2007), and Evaluation of the national nuclear infrastructure development status (2008). These are being updated with a view to new editions about 2013.
In 2009 the IAEA began offering Integrated Nuclear Infrastructure Review (INIR) missions to assess national developments, and six INIR missions were conducted during 2009-11 to evaluate the status of countries’ nuclear infrastructure development. The first three were to Jordan, Indonesia and Vietnam. followed by others to Bangladesh, Belarus, Thailand and UAE to the end of 2012. In 2013 INIR missions were to South Africa – the first country with an operating nuclear power program that has requested this service – Poland and then Turkey. Egypt, Kenya, Malaysia and Nigeria have also expressed interest.
More broadly than these INIR missions are Nuclear Energy System Assessments (NESA), using the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) methodology to help countries develop long-term national nuclear energy strategies. The INPRO methodology identifies a set of Basic Principles, User Requirements, and Criteria in a hierarchical manner as the basis for the assessment of an innovative and sustainable nuclear system. The NESA program helps members “in gaining public acceptance, getting assistance in nuclear energy planning in their country, and increasing awareness of innovations in nuclear technologies”. NESAs have been carried out in Belarus, Kazakhstan, Ukraine and Indonesia.
The IAEA also has an Integrated Regulatory Review Service (IRRS) to scrutinise the regulatory structures in particular countries, upon invitation from the government. This may be used for countries embarking upon nuclear power programs, as in Poland early in 2013.
WANO and ASN support for new nuclear programs
For new entrants to the nuclear industry which are moving towards fuel loading in their first reactor, the World Association of Nuclear Operators (WANO) offers pre-startup peer reviews as part of its peer review program, particularly to address the situation of new plants in countries and organisations without previous nuclear power experience. As of early 2011 it had undertaken 12 such reviews and with the great increase in construction happening, had 62 scheduled for the next five years. WANO’s goal is to do a pre-startup review on every new nuclear power plant worldwide. The reviews seek to evaluate how each operating organization is prepared for startup and make recommendations for improvements based on the collective experience of the world industry. The transition between construction and operation at a nuclear power plant is a delicate period, and many incidents occur during the early months of plant operation - both Three Mile Island 2 and Greifswald 5 were almost new units when accidents destroyed them.
In January 2008, the French Nuclear Safety Authority (ASN) indicated that it would pay attention to new nuclear power projects in countries with no experience in this area. It said that the development of nuclear industry in a country needs at least 10 to 15 years in order to build up skills in safety and control and to define a regulatory framework. In a June 2008 position paper the five-member commission of ASN said that building the infrastructure needed to safely operate a nuclear power plant required time and that it would be selective about providing assistance. The commissioners said ASN would give priority to countries using French technologies, that it would apply "geophysical, economic, political, social, and technical" criteria, and require countries to be party to relevant international treaties. ASN said it takes at least five years to set up the legal and regulatory infrastructure for a nuclear power program, two to ten years to license a new plant, and about five years to build a power plant. That means a "minimum lead time of 15 years" before a new nuclear power plant can be started up in a country that does not already have the required infrastructure.
These comments relate to France's creation of Agency France Nuclear International (AFNI) under its Atomic Energy Commission (CEA) to provide a vehicle for international assistance. AFNI will be focused on helping to set up structures and systems to enable the establishment of civil nuclear programs in countries wanting to develop them, and will draw on all of France's expertise in this. It will be guided by a steering committee comprising representatives of all the ministries involved (Energy, Foreign Affairs, Industry, Research, etc) as well as representatives of other major French nuclear institutions including the CEA itself and probably ASN, though this is yet to be confirmed.
The rest of this paper documents progress in a number of countries. Where an individual paper on the particular country exists (as indicated), more detail will be found there.
Italy
Due to the high reliance on oil and gas, as well as imports, Italy's electricity prices are 45% above EU average.
Italy today is now the only G8 country without its own nuclear power, and is the world's largest net importer of electricity (effectively, some 15% of its needs), mostly nuclear power from France . This is equivalent to output from about 6 GWe of base-load capacity.
However, Italy had been a pioneer of civil nuclear power and built several reactors which operated 1963-90. But following a referendum in November 1987, provoked by the Chernobyl accident 18 months earlier, work on the nuclear program was largely stopped. In 1988 the government resolved to halt all nuclear construction, shut the remaining reactors and decommission them from 1990. Italy then remained largely inactive in nuclear energy for 15 years.
In 2004 a new Energy Law opened up the possibility of joint venture with foreign companies in relation to nuclear power plants and importing electricity from them. This resulted from a clear change in public opinion, especially among younger people favouring nuclear power for Italy.
In 2005 Electricite de France and Italy's Enel signed a co-operation agreement which gives Enel some 200 MWe from the new Flamanville-3 EPR nuclear reactor (1700 MWe) in France, and potentially another 1000 MWe or so from the next five such units built. As well as the 12.5% share, Italy's electric utility Enel will also be involved in design, construction and operation of the plants, which will enhance Italy's power security and improve its economics. Enel subsequently announced it was taking a 12.5% share in the second EPR being constructed in France, at Penly.
Enel has also bought 66% of the Slovak Electric utility which operates six nuclear power reactors, and Enel's investment plan for SE approved in 2005 by the Slovak government includes EUR 1.6 billion for completion of Mochovce nuclear power plant - 942 MWe gross. Enel then took its equity in Spain’s Endesa, which has a major stake in three nuclear reactors, to 92% in February 2009.
In May 2008 the new Italian government said that it would work towards having 25% of its electricity from nuclear power by 2030, requiring 8 to 10 large new reactors by then. The government introduced a package of nuclear legislation, including measures to expedite licensing of new reactors at existing nuclear power plant sites, and to facilitate licensing of new reactor sites. Enel planned to build new reactors at one of three licensed sites: Garigliano, Latina, or Montalto di Castro. The first two had small early-model reactors operating to 1982 and 1987. At Montalto di Castro two larger reactors were almost complete when the country's November 1987 referendum halted construction.
In January 2011 the Constitutional Court ruled that Italy could hold a referendum on the planned re-introduction of nuclear power, as proposed by an opposition party. The question posed in the referendum, held in mid-June 2011, was whether voters wanted to cancel some 70 legislative and regulatory measures which had been taken by the government over three years to make it possible to build new nuclear power plants. It would not affect plans for a waste repository. In the referendum, the 2009 legislation setting up arrangements to generate 25% of the country's electricity from nuclear power by 2030 was decisively rejected, bringing new nuclear plans to a halt.
Several research reactors are operating, including AGN Constanza (since 1960), Uni of Pavia's LENA Triga II (250 kW, since 1965), ENEA's Tapiro (5 kW, since 1971), ENEA's Triga RC-1 (1 MW, since 1960) and a subcritical assembly.
Ansaldo Nucleare, which in conjunction with Canada's AECL, built Cernavoda 2 in Romania, is also involved with international R&D on new reactor systems.
See also Italy paper for more up to date information.
READ MORE
www.world-nuclear.org/info/Country-Profiles/Others/Emerging-Nuclear-Energy-Countries/
(Updated February 2014)
Over 45 countries are actively considering embarking upon nuclear power programs.
These range from sophisticated economies to developing nations.
The front runners after Iran are UAE, Turkey, Vietnam, Belarus, Poland and possibly Jordan.
Nuclear power is under serious consideration in over 45 countries which do not currently have it (in a few, consideration is not necessarily at government level). For countries listed immediately below in bold, nuclear power prospects are more fully dealt with in specific country papers:
In Europe: Italy, Albania, Serbia, Croatia, Portugal, Norway, Poland, Belarus, Estonia, Latvia, Ireland, Turkey.
In the Middle East and North Africa: Iran, Gulf states including UAE, Saudi Arabia, Qatar & Kuwait, Yemen, Israel, Syria, Jordan, Egypt, Tunisia, Libya, Algeria, Morocco, Sudan.
In west, central and southern Africa: Nigeria, Ghana, Senegal, Kenya, Uganda, Namibia.
In South America: Chile, Ecuador, Venezuela, Bolivia, Peru.
In central and southern Asia: Azerbaijan, Georgia, Kazakhstan, Mongolia, Bangladesh, Sri Lanka
In SE Asia: Indonesia, Philippines, Vietnam, Thailand, Malaysia, Singapore, Australia, New Zealand.
In east Asia: North Korea.
Despite the large number of these emerging countries, they are not expected to contribute very much to the expansion of nuclear capacity in the foreseeable future – the main growth will come in countries where the technology is already well established. However, in the longer term, the trend to urbanisation in less-developed countries will greatly increase the demand for electricity, and especially that supplied by base-load plants such as nuclear. The pattern of energy demand in these countries will become more like that of Europe, North America and Japan.
Some of the above countries can be classified according to how far their nuclear programs or plans have progressed:
Some of the above countries can be classified according to how far their nuclear programs or plans have progressed:
Power reactors under construction: UAE, Belarus (Iran reactor has started up and been grid-connected)
Contracts signed, legal and regulatory infrastructure well-developed: Lithuania, Turkey.
Committed plans, legal and regulatory infrastructure developing: Vietnam, Jordan, Poland, Bangladesh.
Well-developed plans but commitment pending: Thailand, Indonesia, Egypt, Kazakhstan, Saudi Arabia, Chile; or commitment stalled: Italy.
Developing plans: Israel, Nigeria, Malaysia, Morocco, Kuwait.
Discussion as serious policy option: Namibia, Kenya, Mongolia, Philippines, Singapore, Albania, Serbia, Croatia, Estonia & Latvia, Libya, Algeria, Azerbaijan, Sri Lanka, Tunisia, Syria, Qatar, Sudan, Venezuela, Bolivia, Peru.
Officially not a policy option at present: Australia, New Zealand, Portugal, Norway, Ireland, Kuwait.
A September 2010 report by the International Atomic Energy Agency (IAEA) on International Status and Prospects of Nuclear Power said that some 65 countries without nuclear power plants “are expressing interest in, considering, or actively planning for nuclear power” at present, after a “gap of nearly 15 years” in such interest worldwide. Of these 65 un-named countries, it said that 21 are in Asia/Pacific, 21 in Africa, 12 in Europe (mostly eastern Europe), and 11 in Latin America. However, of the 65 interested countries, 31 are not currently [2010] planning to build reactors, and 17 of those 31 have grids of less than 5 GW, “too small to accommodate most of the reactor designs on offer.” The report added that technology options may also be limited for countries whose grids are between 5 GW and 10 GW.
Of the countries planning reactors, at September 2010: 14 “indicate a strong intention to proceed” with introduction of nuclear power; seven are preparing but haven’t made a final decision, 10 have made a decision and are preparing infrastructure, two have ordered a new nuclear power plant and one has a plant under construction, according to the IAEA assessment (see below re IAEA 'milestone' approach). These are identifiable in our development breakdown above, though Belarus and Poland have been moved up one category as of early 2012, and Saudi Arabia in mid 2012.
However, by September 2012 the picture was less positive for the leading 14 countries, and the IAEA expected only seven newcomer countries to launch nuclear programs in the near term. It did not name these, but Lithuania, UAE, Turkey, Belarus, Vietnam, Poland, and Bangladesh appear likely candidates. Others had stepped back from commitment, needed more time to set up infrastructure, or did not have credible finance.
One major issue for many countries is the size of their grid system. Many nuclear power plants are larger than the fossil fuel plants they supplement or replace, and it does not make sense to have any generating unit more than about one tenth the capacity of the grid (maybe 15% if there is high reserve capacity). This is so that the plant can be taken offline for refueling or maintenance, or due to unforeseen events. The grid capacity and quality may also be considered regionally, as with Jordan for instance. In many situations, as much investment in the grid may be needed as in the power plant(s).
The IAEA sets out a phased 'milestone' approach to establishing nuclear power capacity in new countries*, applying it to 19 issues. In broad outline the three phase approach is (milestones underlined):
Pre-project phase 1 (1-3 years) leading to knowledgeable commitment to a nuclear power program, resulting in set up of a Nuclear Power Program Implementing Organisation (NEPIO). This deals with the program, not the particular projects after phase 2.
Project decision-making phase 2 (3-7 years) involving preparatory work after the decision is made and up to inviting bids, with the regulatory body being established. In phase 2 the government role progressively gives way to that of the regulatory body and the owner-operator.
Construction phase 3 (7-10 years) with regulatory body operational, up to commissioning and operation.
* Milestones in the development of national infrastructure for nuclear power (2007), and Evaluation of the national nuclear infrastructure development status (2008). These are being updated with a view to new editions about 2013.
In 2009 the IAEA began offering Integrated Nuclear Infrastructure Review (INIR) missions to assess national developments, and six INIR missions were conducted during 2009-11 to evaluate the status of countries’ nuclear infrastructure development. The first three were to Jordan, Indonesia and Vietnam. followed by others to Bangladesh, Belarus, Thailand and UAE to the end of 2012. In 2013 INIR missions were to South Africa – the first country with an operating nuclear power program that has requested this service – Poland and then Turkey. Egypt, Kenya, Malaysia and Nigeria have also expressed interest.
More broadly than these INIR missions are Nuclear Energy System Assessments (NESA), using the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) methodology to help countries develop long-term national nuclear energy strategies. The INPRO methodology identifies a set of Basic Principles, User Requirements, and Criteria in a hierarchical manner as the basis for the assessment of an innovative and sustainable nuclear system. The NESA program helps members “in gaining public acceptance, getting assistance in nuclear energy planning in their country, and increasing awareness of innovations in nuclear technologies”. NESAs have been carried out in Belarus, Kazakhstan, Ukraine and Indonesia.
The IAEA also has an Integrated Regulatory Review Service (IRRS) to scrutinise the regulatory structures in particular countries, upon invitation from the government. This may be used for countries embarking upon nuclear power programs, as in Poland early in 2013.
WANO and ASN support for new nuclear programs
For new entrants to the nuclear industry which are moving towards fuel loading in their first reactor, the World Association of Nuclear Operators (WANO) offers pre-startup peer reviews as part of its peer review program, particularly to address the situation of new plants in countries and organisations without previous nuclear power experience. As of early 2011 it had undertaken 12 such reviews and with the great increase in construction happening, had 62 scheduled for the next five years. WANO’s goal is to do a pre-startup review on every new nuclear power plant worldwide. The reviews seek to evaluate how each operating organization is prepared for startup and make recommendations for improvements based on the collective experience of the world industry. The transition between construction and operation at a nuclear power plant is a delicate period, and many incidents occur during the early months of plant operation - both Three Mile Island 2 and Greifswald 5 were almost new units when accidents destroyed them.
In January 2008, the French Nuclear Safety Authority (ASN) indicated that it would pay attention to new nuclear power projects in countries with no experience in this area. It said that the development of nuclear industry in a country needs at least 10 to 15 years in order to build up skills in safety and control and to define a regulatory framework. In a June 2008 position paper the five-member commission of ASN said that building the infrastructure needed to safely operate a nuclear power plant required time and that it would be selective about providing assistance. The commissioners said ASN would give priority to countries using French technologies, that it would apply "geophysical, economic, political, social, and technical" criteria, and require countries to be party to relevant international treaties. ASN said it takes at least five years to set up the legal and regulatory infrastructure for a nuclear power program, two to ten years to license a new plant, and about five years to build a power plant. That means a "minimum lead time of 15 years" before a new nuclear power plant can be started up in a country that does not already have the required infrastructure.
These comments relate to France's creation of Agency France Nuclear International (AFNI) under its Atomic Energy Commission (CEA) to provide a vehicle for international assistance. AFNI will be focused on helping to set up structures and systems to enable the establishment of civil nuclear programs in countries wanting to develop them, and will draw on all of France's expertise in this. It will be guided by a steering committee comprising representatives of all the ministries involved (Energy, Foreign Affairs, Industry, Research, etc) as well as representatives of other major French nuclear institutions including the CEA itself and probably ASN, though this is yet to be confirmed.
The rest of this paper documents progress in a number of countries. Where an individual paper on the particular country exists (as indicated), more detail will be found there.
Italy
Due to the high reliance on oil and gas, as well as imports, Italy's electricity prices are 45% above EU average.
Italy today is now the only G8 country without its own nuclear power, and is the world's largest net importer of electricity (effectively, some 15% of its needs), mostly nuclear power from France . This is equivalent to output from about 6 GWe of base-load capacity.
However, Italy had been a pioneer of civil nuclear power and built several reactors which operated 1963-90. But following a referendum in November 1987, provoked by the Chernobyl accident 18 months earlier, work on the nuclear program was largely stopped. In 1988 the government resolved to halt all nuclear construction, shut the remaining reactors and decommission them from 1990. Italy then remained largely inactive in nuclear energy for 15 years.
In 2004 a new Energy Law opened up the possibility of joint venture with foreign companies in relation to nuclear power plants and importing electricity from them. This resulted from a clear change in public opinion, especially among younger people favouring nuclear power for Italy.
In 2005 Electricite de France and Italy's Enel signed a co-operation agreement which gives Enel some 200 MWe from the new Flamanville-3 EPR nuclear reactor (1700 MWe) in France, and potentially another 1000 MWe or so from the next five such units built. As well as the 12.5% share, Italy's electric utility Enel will also be involved in design, construction and operation of the plants, which will enhance Italy's power security and improve its economics. Enel subsequently announced it was taking a 12.5% share in the second EPR being constructed in France, at Penly.
Enel has also bought 66% of the Slovak Electric utility which operates six nuclear power reactors, and Enel's investment plan for SE approved in 2005 by the Slovak government includes EUR 1.6 billion for completion of Mochovce nuclear power plant - 942 MWe gross. Enel then took its equity in Spain’s Endesa, which has a major stake in three nuclear reactors, to 92% in February 2009.
In May 2008 the new Italian government said that it would work towards having 25% of its electricity from nuclear power by 2030, requiring 8 to 10 large new reactors by then. The government introduced a package of nuclear legislation, including measures to expedite licensing of new reactors at existing nuclear power plant sites, and to facilitate licensing of new reactor sites. Enel planned to build new reactors at one of three licensed sites: Garigliano, Latina, or Montalto di Castro. The first two had small early-model reactors operating to 1982 and 1987. At Montalto di Castro two larger reactors were almost complete when the country's November 1987 referendum halted construction.
In January 2011 the Constitutional Court ruled that Italy could hold a referendum on the planned re-introduction of nuclear power, as proposed by an opposition party. The question posed in the referendum, held in mid-June 2011, was whether voters wanted to cancel some 70 legislative and regulatory measures which had been taken by the government over three years to make it possible to build new nuclear power plants. It would not affect plans for a waste repository. In the referendum, the 2009 legislation setting up arrangements to generate 25% of the country's electricity from nuclear power by 2030 was decisively rejected, bringing new nuclear plans to a halt.
Several research reactors are operating, including AGN Constanza (since 1960), Uni of Pavia's LENA Triga II (250 kW, since 1965), ENEA's Tapiro (5 kW, since 1971), ENEA's Triga RC-1 (1 MW, since 1960) and a subcritical assembly.
Ansaldo Nucleare, which in conjunction with Canada's AECL, built Cernavoda 2 in Romania, is also involved with international R&D on new reactor systems.
See also Italy paper for more up to date information.
READ MORE
www.world-nuclear.org/info/Country-Profiles/Others/Emerging-Nuclear-Energy-Countries/